Sorry for the previous blank post.
Here's the content:
Title:
What if the Irresponsible Teachers Are Dominating? A Method of Training on Samples and Clustering on Teachers
Authors:
Shuo Chen, Jianwen Zhang, Guangyun Chen, Changshui Zhang
State Key Laboratory on Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Automation, Tsinghua University, Beijing 100084, China
Abstract:
Learning from multiple teachers or sources
has received more attention of the researchers in the machine
learning area. In this setting, the learning system is dealing
with samples and labels provided by multiple teachers, who
in common cases, are non-expert. Their labeling styles and
behaviors are usually diverse, some of which are even detrimental
to the learning system. Thus, simply putting them
together and utilizing the algorithms designed for singleteacher
scenario would be not only improper, but also damaging.
Our work focuses on a case where the teachers are composed of good
ones and irresponsible ones. By irresponsible, we mean the
teacher who takes the labeling task not seriously and label
the sample at random without inspecting the sample itself.
If we do not take out their effects, our learning system would be ruined with no
doubt. In this paper, we propose a method for picking out the
good teachers with promising experimental results. It works
even when the irresponsible teachers are dominating in numbers.
Link
No comments:
Post a Comment