Wednesday, October 30, 2013

Lab meeting Oct.31, (Andi) Non-rigid metric reconstruction from perspective cameras (IVCJ 2010)

Title: Non-rigid metric reconstruction from perspective cameras

Authors: Xavier Lladó, Alessio Del Bue, Lourdes Agapito

Abstract: The metric reconstruction of a non-rigid object viewed by a generic camera poses new challenges since current approaches for Structure from Motion assume the rigidity constraint of a shape as an essential condition. In this work, we focus on the estimation of the 3-D Euclidean shape and motion of a non-rigid shape observed by a perspective camera. In such case deformation and perspective effects are difficult to decouple – the parametrization of the 3-D non-rigid body may mistakenly account for the perspective distortion. Our method relies on the fact that it is often a reasonable assumption that some of the points on the object’s surface are deforming throughout the sequence while others remain rigid. Thus, relying on the rigidity constraints of a subset of rigid points, we estimate the perspective to metric upgrade trans- formation. First, we use an automatic segmentation algorithm to identify the set of rigid points. These are then used to estimate the internal camera calibration parameters and the overall rigid motion. Finally, we formulate the problem of non-rigid shape and motion estimation as a non-linear optimization where the objective function to be minimized is the image reprojection error. The prior information that some of the points in the object are rigid can also be added as a constraint to the non-linear minimization scheme in order to avoid ambiguous configurations. We perform experiments on different synthetic and real data sets which show that even when using a minimal set of rigid points and when varying the intrinsic cam- era parameters it is possible to obtain reliable metric information.


Wednesday, October 23, 2013

Lab Meeting Oct. 24, 2013 (Alan): Optimal Metric Projections for Deformable and Articulated Structure-from-Motion (IJCV 2012)

Title: Optimal Metric Projections for Deformable and Articulated Structure-from-Motion (IJCV 2012)
Authors: Marco Paladini, Alessio Del Bue, João Xavier, Lourdes Agapito, Marko Stoši´c, Marija Dodig

This paper describes novel algorithms for recovering the 3D shape and motion of deformable and articulated objects purely from uncalibrated 2D image measurements using a factorisation approach. Most approaches to deformable and articulated structure from motion require to upgrade an initial affine solution to Euclidean space by imposing metric constraints on the motion matrix. While in the case of rigid structure the metric upgrade step is simple since the constraints can be formulated as linear, deformability in the shape introduces non-linearities. In this paper we propose an alternating bilinear approach to solve for non-rigid 3D shape and motion, associated with a globally optimal projection step of the motion matrices onto the manifold of metric constraints. Our novel optimal projection step combines into a single optimisation the computation of the orthographic projection matrix and the configuration weights that give the closest motion matrix that satisfies the correct block structure with the additional constraint that the projection matrix is guaranteed to have orthonormal rows (i.e. its transpose lies on the Stiefel manifold). This constraint turns out to be non-convex. The key contribution of this work is to introduce an efficient convex relaxation for the non-convex projection step. Efficient in the sense that, for both the cases of deformable and articulated motion, the proposed relaxations turned out to be exact (i.e. tight) in all our numerical experiments. The convex relaxations are semi-definite (SDP) or second-order cone (SOCP) programs which can be readily tackled by popular solvers. An important advantage of these new algorithms is their ability to handle missing data which becomes crucial when dealing with real video sequences with self-occlusions. We show successful results of our algorithms on synthetic and real sequences of both deformable and articulated data. We also show comparative results with state of the art algorithms which reveal that our new methods outperform existing ones.


Wednesday, October 16, 2013

Lab Meeting October 17th, 2013 (Jeff): Temporally Scalable Visual SLAM using a Reduced Pose Graph

Title: Temporally Scalable Visual SLAM using a Reduced Pose Graph

Authors: Hordur Johannsson, Michael Kaess, Maurice Fallon, and John J. Leonard


In this paper, we demonstrate a system for temporally scalable visual SLAM using a reduced pose graph representation. Unlike previous visual SLAM approaches that maintain static keyframes, our approach uses new measurements to continually improve the map, yet achieves efficiency by avoiding adding redundant frames and not using marginalization to reduce the graph. To evaluate our approach, we present results using an online binocular visual SLAM system that uses place recognition for both robustness and multi-session operation. Additionally, to enable large-scale indoor mapping, our system automatically detects elevator rides based on accelerometer data. We demonstrate long-term mapping in a large multi-floor building, using approximately nine hours of data collected over the course of six months. Our results illustrate the capability of our visual SLAM system to map a large are over extended period of time.

IEEE International Conference on Robotics and Automation (ICRA), 2013


Reference Link:
Another paper with the same title:
In RSS Workshop on Long-term Operation of Autonomous Robotic Systems in Changing Environments, 2012.