Tuesday, February 11, 2014

Lab Meeting, February 13, 2014(Hung-Chih Lu): Zhaoyin Jiay, Andrew Gallaghery, Ashutosh Saxena "3D-Based Reasoning with Blocks, Support, and Stability." CVPR 2013

Title:
3D-Based Reasoning with Blocks, Support, and Stability

Author:
Zhaoyin Jiay, Andrew Gallaghery, Ashutosh Saxena.

Abstract:
 3D volumetric reasoning is important for truly understanding a scene. Humans are able to both segment each
object in an image, and perceive a rich 3D interpretation of the scene, e.g., the space an object occupies, which objects support other objects, and which objects would, if moved, cause other objects to fall. We propose a new approach for parsing RGB-D images using 3D block units for volumetric reasoning. The algorithm fits image segments with 3D blocks, and iteratively evaluates the scene based on block interaction properties. We produce a 3D representation of the scene based on jointly optimizing over segmentations,
block fitting, supporting relations, and object stability. Our algorithm incorporates the intuition that a good 3D representation of the scene is the one that fits the data well, and is a stable, self-supporting (i.e., one that does not topple) arrangement of objects. We experiment on several datasets including controlled and real indoor scenarios. Results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.

From
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013

Link

No comments: