Saturday, November 15, 2008

CMU talk: Learning Language from its Perceptual Context

Joint Intelligence/LTI Seminar
November 21, 2008

Learning Language from its Perceptual Context
Raymond J. Mooney, University of Texas at Austin

Current systems that learn to process natural language require laboriously constructed human-annotated training data. Ideally, a computer would be able to acquire language like a child by being exposed to linguistic input in the context of a relevant but ambiguous perceptual environment. As a step in this direction, we present a system that learns to sportscast simulated robot soccer games by example. The training data consists of textual human commentaries on Robocup simulation games. A set of possible alternative meanings for each comment is automatically constructed from game event traces. Our previously developed systems for learning to parse and generate natural language (KRISP and WASP) were augmented to learn from this data and then commentate novel games. The system is evaluated based on its ability to parse sentences into correct meanings and generate accurate descriptions of game events. Human evaluation was also conducted on the overall quality of the generated sportscasts and compared to human-generated commentaries.

Bio:
Raymond J. Mooney is a Professor in the Department of Computer Sciences at the University of Texas at Austin. He received his Ph.D. in 1988 from the University of Illinois at Urbana/Champaign. He is an author of over 150 published research papers, primarily in the areas of machine learning and natural language processing. He is the current President of the International Machine Learning Society, was program co-chair for the 2006 AAAI Conference on Artificial Intelligence, general chair of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, and co-chair of the 1990 International Conference on Machine Learning. He is a Fellow of the American Association for Artificial Intelligence and recipient of best paper awards from the National Conference on Artificial Intelligence, the SIGKDD International Conference on Knowledge Discovery and Data Mining, the International Conference on Machine Learning, and the Annual Meeting of the Association for Computational Linguistics. His recent research has focused on learning for natural-language processing, text mining for bioinformatics, statistical relational learning, and transfer learning.

No comments: