Thursday, November 14, 2013

Lab meeting Nov.14,(Benny) Detection- and Trajectory-Level Exclusion in Multiple Object Tracking (CVPR2013)

Authors: Anton Milan, Konrad Schindler, Stefan Roth

Abstract
When tracking multiple targets in crowded scenarios, modeling mutual exclusion between distinct targets becomes important at two levels: (1) in data association, each target observation should support at most one trajectory and each trajectory should be assigned at most one observation per frame; (2) in trajectory estimation, two trajectories should remain spatially separated at all times to avoid collisions. Yet, existing trackers often sidestep these important constraints. We address this using a mixed discrete-continuous conditional random field (CRF) that explicitly models both types of constraints: Exclusion between conflicting observations with supermodular pairwise terms, and exclusion between trajectories by generalizing global label costs to suppress the co-occurrence of incompatible labels (trajectories). We develop an expansion move-based MAP estimation scheme that handles both non-submodular constraints and pairwise global label costs. Furthermore, we perform a statistical analysis of ground-truth trajectories to derive appropriate CRF potentials for modeling data fidelity, target dynamics, and inter-target occlusion.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.