Monday, May 06, 2013

Lab meeting Mar 8th 2013 (Gene): Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Presented by: Gene

From: CVPR2013

Authors: Marcus A. Brubaker, Andreas Geiger, Raquel Urtasun

Abstract:

In this paper we propose an affordable solution to selflocalization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilistic model as well as an efficient approximate inference algorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of drivable roads.


Link

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.