Authors: Erik Schuitema, Martijn Wisse, Thijs Ramakers and Pieter Jonker
Abstract: Real robots demonstrating online Reinforcement Learning (RL) to learn new tasks are hard to find. The specific properties and limitations of real robots have a large impact on their suitability for RL experiments. In this work, we derive the main hardware and software requirements that a RL robot should fulfill, and present our biped robot LEO that was specifically designed to meet these requirements. We verify its aptitude in autonomous walking experiments using a pre-programmed controller. Although there is room
for improvement in the design, the robot was able to walk, fall and stand up without human intervention for 8 hours, during which it made over 43,000 footsteps.
Link
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.