This Blog is maintained by the Robot Perception and Learning lab at CSIE, NTU, Taiwan. Our scientific interests are driven by the desire to build intelligent robots and computers, which are capable of servicing people more efficiently than equivalent manned systems in a wide variety of dynamic and unstructured environments.
Tuesday, January 22, 2013
Lab meeting Jan. 23, 2013 (Gene): Fully Distributed Scalable Smoothing and Mapping with Robust Multi-robot Data Association (IEEE 2012)
Title: Fully Distributed Scalable Smoothing and Mapping with Robust Multi-robot Data Association (IEEE 2012)
Authors: Alexander Chunningham, Kai M. Wurm, Wolfarm Burgard, and Frank Dellaert
Abstract:
In this paper we focus on the multi-robot perception problem, and present an experimentally validated end-to-end multi-robot mapping framework, enabling individual robots in a team to see beyond their individual sensor horizons. The inference part of our system is the DDF-SAM algorithm [1], which provides a decentralized communication and inference scheme, but did not address the crucial issue of data association.
One key contribution is a novel, RANSAC-based, approach for performing the between-robot data associations and initialization of relative frames of reference. We demonstrate this system with both data collected from real robot experiments, as well as in a large scale simulated experiment demonstrating the scalability of the proposed approach.
Link
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment