Real-time Identification and Localization of Body Parts from Depth Images
Christian Plagemann
Varun Ganapathi
Daphne Koller
Sebastian Thrun
Abstract
We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points of the body, which can be classified using local shape descriptors. Our approach also provides a natural way of estimating a 3D orientation vector for a given interest point. This can be used to normalize the local shape descriptors to simplify the classification problem as well as to directly estimate the orientation of body parts in space.
Experiments show that our interest points in conjunction with a boosted patch classifier are significantly better in detecting body parts in depth images than state-of-the-art sliding-window based detectors.
Paper Link
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.