Robotics: Science and Systems III
Abstract:
Many urban navigation applications (e.g., autonomous navigation, driver assistance systems) can benefit greatly from localization with centimeter accuracy. Yet such accuracy cannot be achieved reliably with GPS-based inertial guidance systems, specifically in urban settings.
We propose a technique for high-accuracy localization of moving vehicles that utilizes maps of urban environments. Our approach integrates GPS, IMU, wheel odometry, and LIDAR data acquired by an instrumented vehicle, to generate high-resolution environment maps. Offline relaxation techniques similar to recent SLAM methods are employed to bring the map into alignment at intersections and other regions of self-overlap. By reducing the final map to the flat road surface, imprints of other vehicles are removed. The result is a 2-D surface image of ground reflectivity in the infrared spectrum with 5cm pixel resolution.
To localize a moving vehicle relative to these maps, we present a particle filter method for correlating LIDAR measurements with this map. As we show by experimentation, the resulting relative accuracies exceed that of conventional GPS-IMU-odometry-based methods by more than an order of magnitude. Specifically, we show that our algorithm is effective in urban environments, achieving reliable real-time localization with accuracy in the 10-centimeter range. Experimental results are provided for localization in GPS-denied environments, during bad weather, and in dense traffic.
Paper (PDF): Link
Many urban navigation applications (e.g., autonomous navigation, driver assistance systems) can benefit greatly from localization with centimeter accuracy. Yet such accuracy cannot be achieved reliably with GPS-based inertial guidance systems, specifically in urban settings.
We propose a technique for high-accuracy localization of moving vehicles that utilizes maps of urban environments. Our approach integrates GPS, IMU, wheel odometry, and LIDAR data acquired by an instrumented vehicle, to generate high-resolution environment maps. Offline relaxation techniques similar to recent SLAM methods are employed to bring the map into alignment at intersections and other regions of self-overlap. By reducing the final map to the flat road surface, imprints of other vehicles are removed. The result is a 2-D surface image of ground reflectivity in the infrared spectrum with 5cm pixel resolution.
To localize a moving vehicle relative to these maps, we present a particle filter method for correlating LIDAR measurements with this map. As we show by experimentation, the resulting relative accuracies exceed that of conventional GPS-IMU-odometry-based methods by more than an order of magnitude. Specifically, we show that our algorithm is effective in urban environments, achieving reliable real-time localization with accuracy in the 10-centimeter range. Experimental results are provided for localization in GPS-denied environments, during bad weather, and in dense traffic.
Paper (PDF): Link